

Ultrafast Studies of Unimolecular Dissociation Rates of the Acetyl and Methyl Sulfonyl Radicals

J.C. Owrutsky and A.P. Baronavski Code 6111, Chemistry Division Naval Research Laboratory Washington, D.C. 20375

Gas Phase Photodissociation Dynamics

Multiple dissociation reactions: beyond concertedness Unimolecular dynamics of intermediates:

- RRKM or nonstatistical dissociation
 - energy disposition of products:among (partitioning) & within (IVR) products
 - dissociation rates
- Excited state dynamics

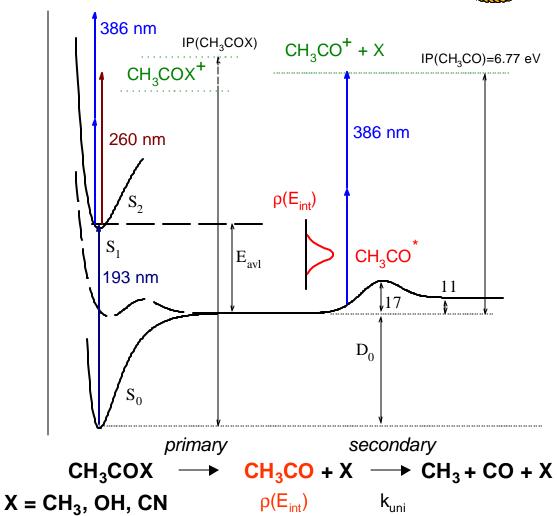
Condensed Phase Photochemistry

- Solution: faster relaxation
- Surface adsorbates: unique substrate-mediated mechanisms

Biochemistry
Molecular Electronics
Laser Machining

Optical Control

- Medium-sized molecules
- "Leverage" sequential reactions

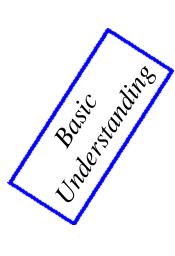

Atmospheric Chemistry: Stable radical source

Z CONTROLLANDON

Multiple Dissociation Dynamics

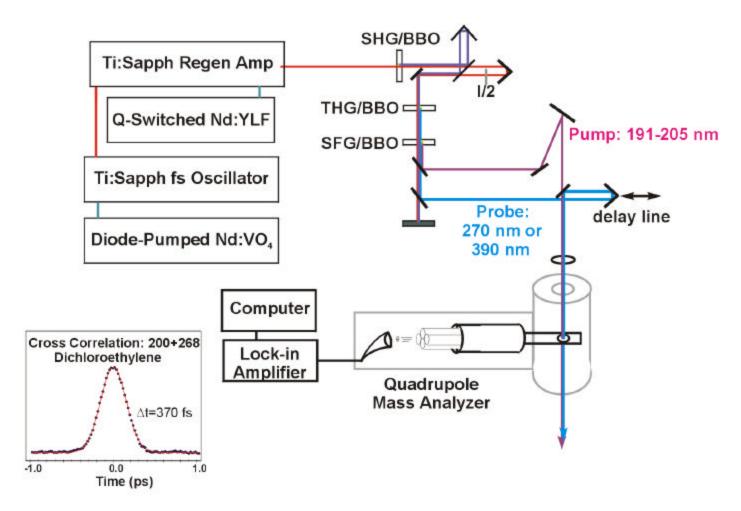
Unimolecular Dissociation:

- Is it statistical, RRKM?
 - $k_{uni}(E_{int})=k_{RRKM}$?
- If nonstatistical,
 - is it inherent?
 k_{uni} > IVR (k_{uni} dependent?)
 - or depend on preparation?
 - precursor
 - excited state
- Clearest assessment when <u>both</u>
 - k_{uni} and E_{int} are measured



1) Acetyl - CH₃CO

- Benchmark multiple dissociation intermediate
 - extensively studied energy partitioning determined
 - ▶ time-resolved dissociation times
 - basis to assess how statistical ("RRKM-ness")
- Directly compare for same excitation conditions:
 - $k_{obs} = k_{RRKM}(E_{int})$? Need k_{obs} and E_{int}
 - ➤ product studies at 193 nm:
 - ▶ deep UV fs photoionization
- Various precursors: range of precision in E_{int}(acetyl)


2) Methyl Sulfonyl - CH₃SO₂

- Not as well characterized (e.g., energy partitioning)
- Find precursor for source of stable radicals

Mass-Resolved Deep UV Femtosecond Photoionization Spectroscopy

Ultrafast Photoionization of the Unimolecular Dissociation of Acetyl Radical

Acetyl from Several Precursors:

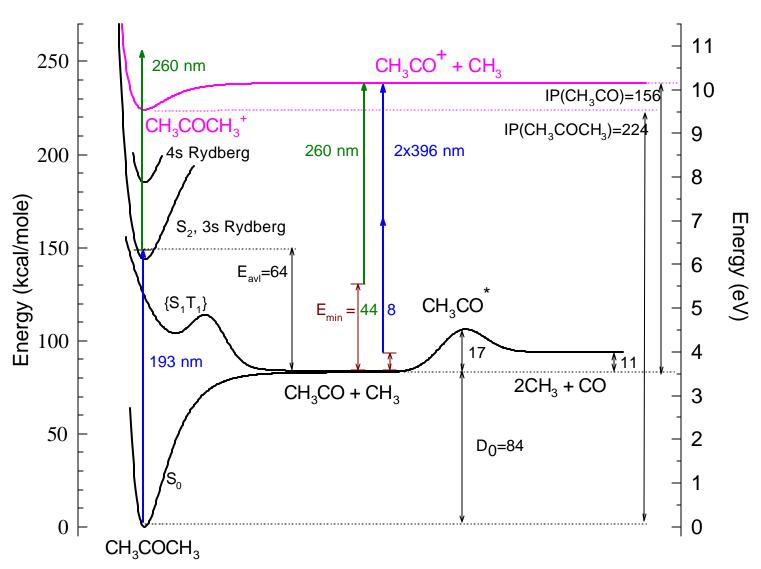
Acetone (h₆ and d₆): S₂ Rydberg at 193 nm

- Extensively studied energy partitioning (North et al.)
- Polyatomic fragments imprecise E_{int}(acetyl) k(uni)_{obs} vs. k_{RRKM}: acetyl dissociation rates <u>not</u> statistical

Acetyl Cyanide and Acetic Acid at 193 nm

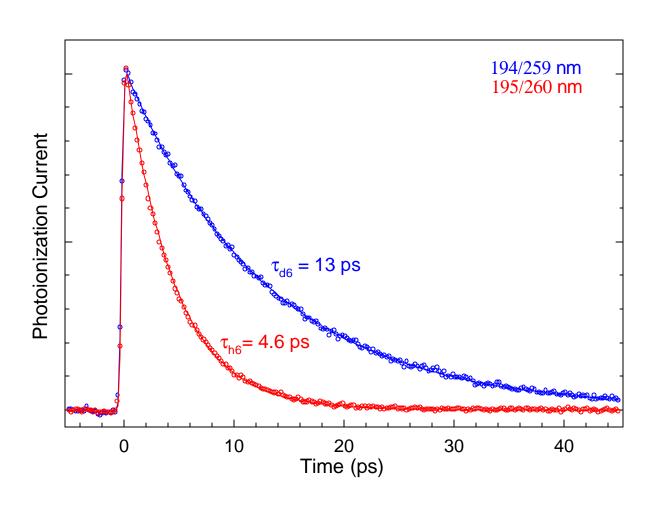
- Product studies at 193 nm
- Diatomic companion precise E_{int}(acetyl)
 acetyl dissociation rates <u>consistent with RRKM</u>

Nonstatistical acetyl dynamics: precursor dependent - <u>NOT</u> intrinsically non-RRKM

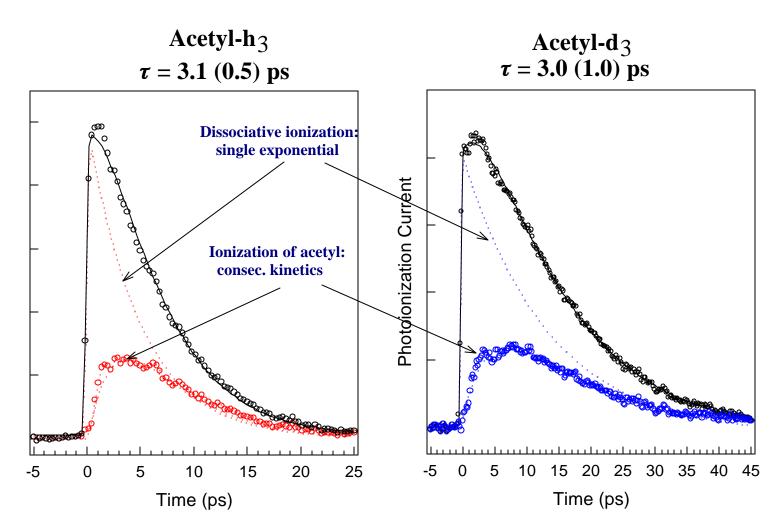


Very Brief History of Acetone Photodissociation at 193 nm

- S₂, Rydberg state excited at 193 nm
- Product energies: PTS and spectroscopy
 - ➤ Numerous product internal energy studies, UV and IR: CH₃ and CO
 - ► <E_T> (16 kcal/mole) [North et al.] : better determined than <E_{int}>
 - ► E_{int}(CH₃) and E_{int}(CH₃CO) not well determined: 12-17 kcal/mole
- 17±1 kcal/mole barrier for acetyl dissociation: PTS of acetyl chloride [North et al.]


es

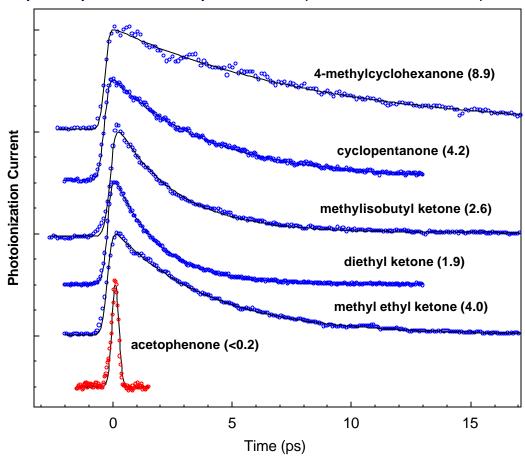
Acetone Potential Energy Surfaces



Primary Dissociation Dynamics Lifetime of S₂ State

Acetyl Dissociation Dynamics 195 + 2x390 nm

- S₂ excited state lifetime is long and isotope dependent why it's isotropic
- Acetyl unimolecular dissociation rate implies it's nonstatistical
 - ➤ simple comparison of k_{obs} and k(E_{int}) prevented by large uncertainty in E_{int}
 - ► $1/k_{obs} = 3.1$ ps: apparent $E_{int}(CH_3CO) = 25$ kcal/mole using RRKM rate:
 - inconsistent with standard energy partitioning (imp.,BIM, stat.)
 - k_{obs} slower than expected (like other obs. nonRRKM for acetyl)
- Unambiguous determination of nonRRKM dissociation precluded by complexity of methyl group
- Find acetyl precursors with simple fragments & well determined internal energy

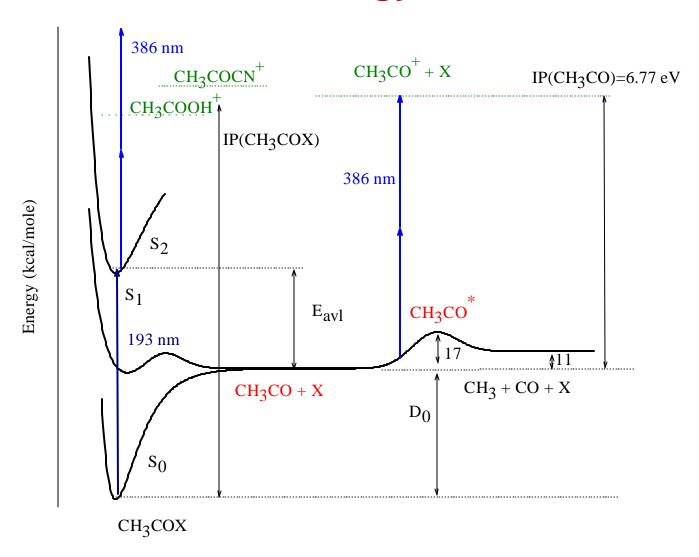

Hello, Acetyl Cyanide and Acetic Acid!

For 195-200 nm excitation:

- aliphatic ketones: excited state lifetimes are 2-9 ps
- prompt for acetophenone (aromatic ketone)

Background and Previous Studies

(Horwitz et al., North et al. and Guest and coworkers)


Major primary dissociation channel: to acetyl + OH/CN

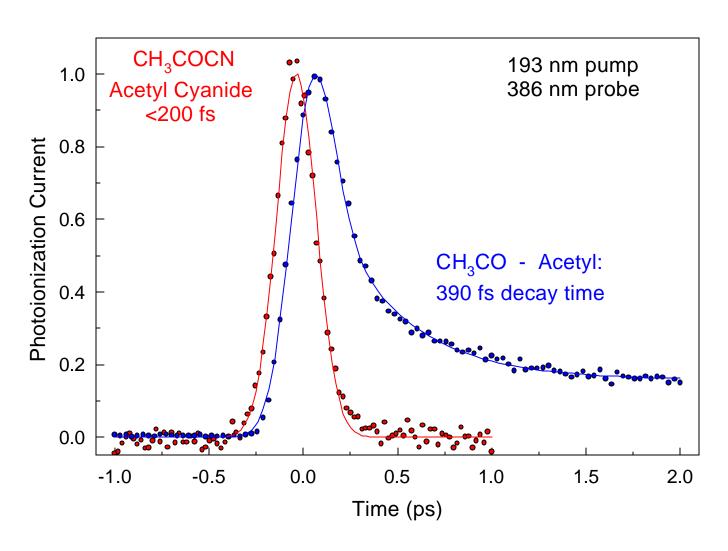
$$CH_3COCN \longrightarrow CH_3CO + CN$$

- Negligible product angular anisotropy
- Product energy distributions measured for diatomic fragments
 - internal state distributions (R and V) measured spectroscopically
 - translation energy distributions: Doppler for OD; PTS for CN
- Acetyl internal energy distribution determined for both precursors

Potential Energy Surfaces

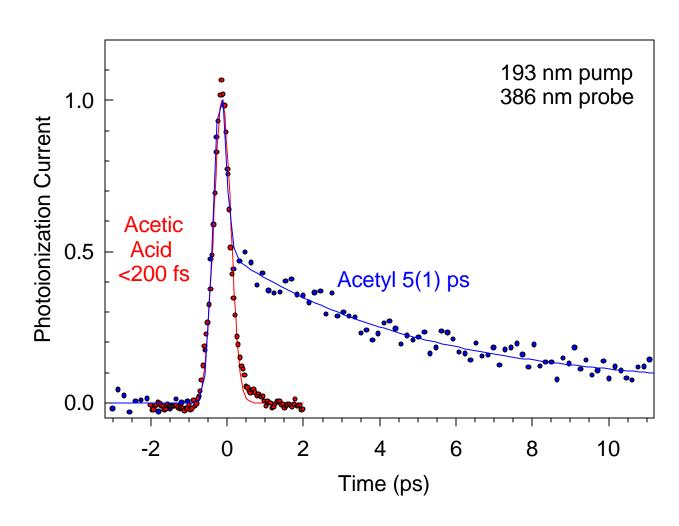
Energetics and Product Energies

8 exc(nm) [kcal/mole]	Eavl	< E _t >	< E _r (X)>	<e<sub>v(X)></e<sub>	<e<sub>int(CH₃CO)></e<sub>				
CH ₃ COOH (X=OH), D₀=110									
218 [131.2]	21.2	13.7	1.2	<0.2	4.9				
200 [143.0]	33.0	14.5	1.4	<0.4	16.7				
194 [147.7]	37.7	15.0ª	1.4	<0.5	20.8				
CH ₃ COCN (X=CN), D₀=102.2									
193 [148.1]	45.9	7.2	3.6	1.2	33.9				


a. <E_t> at 194 nm extrapolated from 200 and 218 nm results

Acetyl from acetone at 193 nm: $\langle E_{int}, (CH_3CO) \rangle$

from product studies: 31-45 kcal/mole?


from k_{obs} via $k_{RRKM}(E_{int})$: 25 kcal/mole

Acetyl Cyanide Photodissociation Dynamics

Acetic Acid Photodissociation Dynamics

How is acetyl prepared? Does this affect dynamics?

- For acetone at 193 nm: predissociation from a Rydberg state
- For acetic acid at 200 and 218 nm: from excitation of a B*7n transition
- For acetyl cyanide at 193 nm: NOT clear

Acetyl Cyanide Product Anisotropy and Excited State Lifetime

- No anisotropy observed (\$. 0, [North et al.]):
 - suggested transition to Rydberg state high anisotropy
 - ▶ low anisotropy obs. rotational averaging for long lived excited state:
- Does not agree with our measured short excited state lifetime

._____

Angular Product Distribution and Excited State Lifetime - In General

Isotropic: 1) long lived state - rotational averaging (S₂ acetone, S₁?)

2) fast but magic angle between transition moment and diss. bond (S₁ acetone, DMSO, acetic acid and *acetyl cyanide*)

Anisotropic: fast

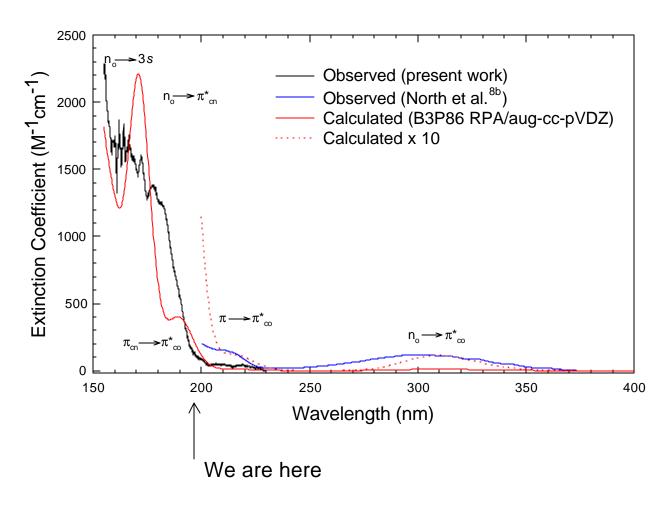
Acetyl Cyanide Transition from Rydberg State Energy

Rydberg state energy: $E_{n,l} = IP - (13.606/(n - *_l)2)$

- Ionization Potential of Acetyl Cyanide: 11.2 eV
 - ➤ No acetyl cyanide ions with 193 nm/257 nm
 - ➤ FTMS bracketing expts [McElvany & Baronavski]
- The 3s of acetyl cyanide, E_{3s} = 7.82 eV (158 nm):
 E_{3s}(acetone) agrees with observed: 6.30 eV (197 nm)
- 194 nm transition in acetyl cyanide <u>is not</u> to a Rydberg state.

VUV Spectra and Excited State Calculations for CH₃COCN

- Wiberg et al.: Time Dependent Density Functional methods accurate excited state calculations of acetone, formaldehyde, and acetaldehyde
- G98 calculations for acetone and acetyl cyanide:
 MP2 optimized structures, B3P86 functional: acetone results agree w/ spectra
- Measure VUV spectra of acetyl cyanide and compare with calculations



Results from Calculations and Spectra

- The calculated spectrum agrees well with our experimental spectrum
- The 193 nm absorption is due to a B* 7B rather than 3s 7 n transition
 - ➤ Indicated by orbitals
 - ➤ The 3s Rydberg state is calculated to be at 7.57 eV
- Assignment consistent with higher IP and location of Rydberg
 G94 calculation at MP2 level: IP(adiabatic) = 11.49 eV
- The transition moment for 194 nm band at 57E with respect to the CN bond
 - ➤ Results in \$ = -0.22, probably too small for North *et al.* to measure
 - ➤ Explains isotropic products with short lifetime
- Excitation for acetyl cyanide more similar to that for acetic acid (valence) than for acetone (Rydberg)

Calculated and Observed Absorption Spectra for Acetyl Cyanide

Measured and Calculated Acetyl Dissociation Times

For both molecules, parent excited state is short-lived (<300 fs)

λ(nm)	<e<sub>int>(kcal)</e<sub>	Precursor	$\tau_{<\text{Eint}>}(\text{ps})$	$ au_{ ext{dist}}$	$ au_{ m obs}$
194.5	19.6	CH ₃ COOH	9.1	6.2	5 (1)
194.5	31.0	CH₃COCN	0.74	0.56	0.56
194.0	31.4	CH ₃ COCN	0.70	0.53	0.52
193.5	31.7	CH ₃ COCN	0.63	0.50	0.46
193.0	32.1	CH ₃ COCN	0.60	0.47	0.39

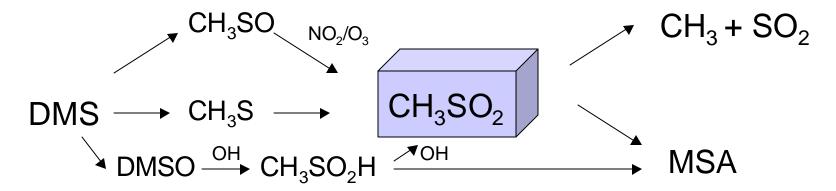
- Good agreement between observed and calculated RRKM acetyl lifetimes:
 - ▶ based on experimentally derived E_{int}
 - ▶ better agreement with for rate <k(E) ρ (E)> than with k(<E $_{int}>$)
- Unimolecular Dissociation of Acetyl from Acetyl Cyanide and Acetic Acetic
 Consistent with RRKM Rate

Summary: Acetyl Cyanide and Acetic Acid

Short (<300 fs) parent excited state lifetimes observed for both Acetyl Cyanide: assignment and excited state data are consistent

- Spectra + calcs: 194 nm transition: B* 7B rather than to 3s Rydberg state
- Isotropic products: transition moment direction relative to CN bond

Acetyl from acetic acid and acetyl cyanide excited near 200 nm

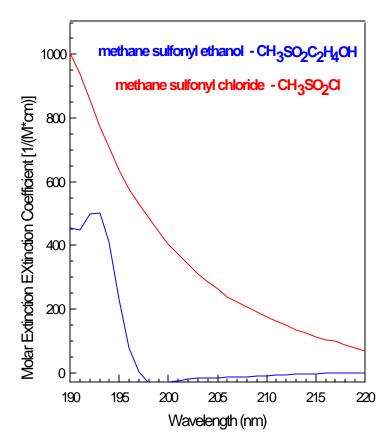

- Measured and calculated RRKM rates dissociation rates agree
- Detailed comparison possible:
 simple diatomics fragments product energy measurements are available
- Dynamics appear nonstatistical for other precursors
 acetone [Kim et al.] and acetyl chloride [Suzuki and coworkers]
- Implies state-specific, preparation-dependent behavior (extrinsic non-RRKM)
 differences:

nature of excited state (Rydberg vs. valence) fragment complexity, symmetry

Ultrafast Study of the Unimolecular Dissociation of Methyl Sulfonyl

 CH₃SO₂: Possible intermediate in atmospheric sulfur chemistry and liquid photooxidation of DMS

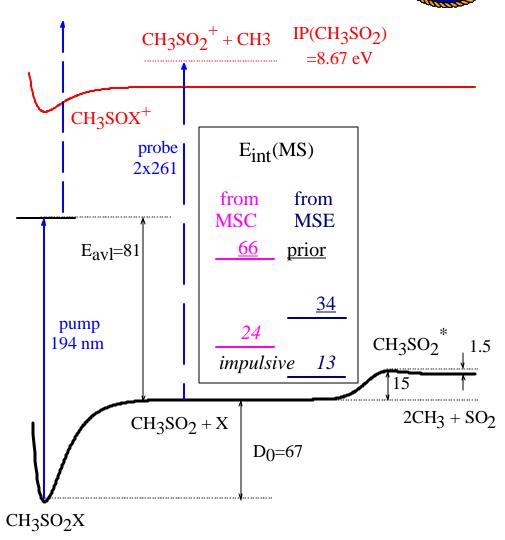
- Spectroscopy and dynamics: few studies not well characterized
 - ▶ liquid phase absorption
 - ➤ calculations of structures, energetics and vibrational freqs.
- Kinetics of CH₃SO₂: product studies not reactant



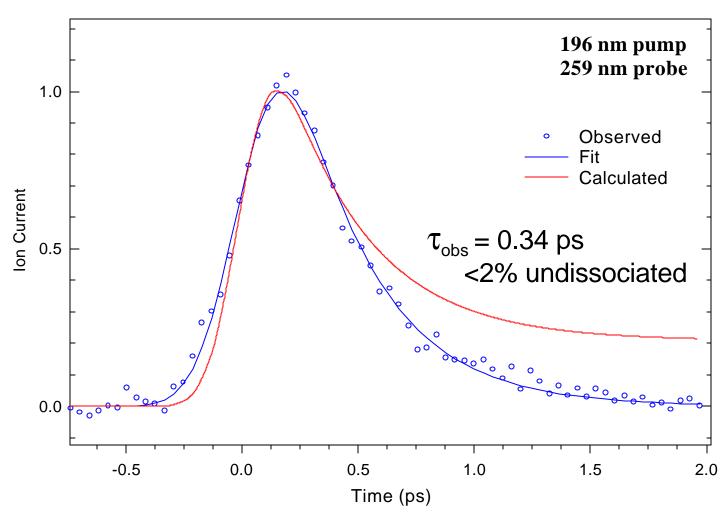
CH₃SO₂ Unimolecular Dynamics Study

- 1) Develop photolytic route to generate <u>stable</u> CH₃SO₂
- 2) Is CH₃SO₂ dissociation rate statistical/RRKM?

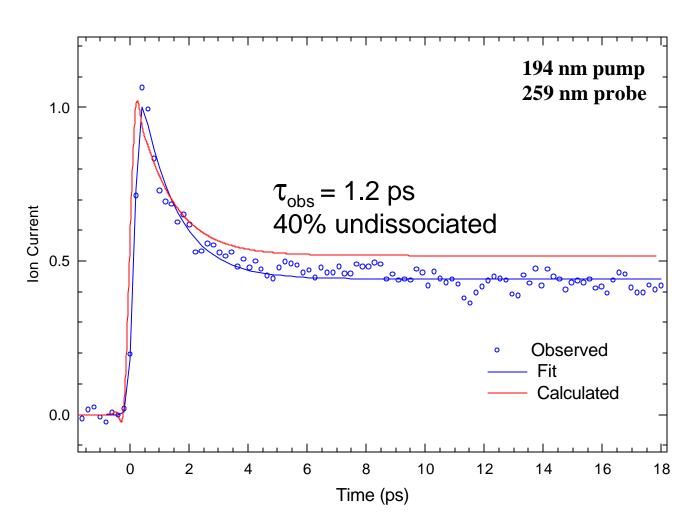
Deep UV fs photoionization study of dissociation dynamics


- Various precursors:
 - Methyl sulfonyl chloride (MSC)
 - Methyl sulfonyl ethanol (MSE)
- Measure dissociation rates: primary and secondary
- Fractional dissociation of MS
 (i.e., stability) determined
 for each precursor

Methyl Sulfonyl Dissociation Dynamics


Compare measured and calc'd rates

- NO PRODUCT STUDIES:
 - ➤ Anything goes!
 - Assume energy partitioning
 - ρ(E): impulsive and prior
- k_{uni} obs. vs. calc ($\langle k(E)\rho(E)\rangle$)
- fraction dissociation
- k_{calc}(E): ab initio barrier and freqs
 - ▶ Davis
 - ▶ Marshall
 - ➤ Franck and Turcek



Ultrafast Photoionization: CH₃SO₂ from MS-Chloride

Ultrafast Photoionization: CH₃SO₂ from MS-EtOH

Dissociation rates and fractional dissociation MS:

Very close to calculations with impulsive/RRKM

Dissociation from prior - too much for MSE and too fast

Precursor	Calculated time (ps)	Observed time (ps)	Calc'd fraction undiss.	Obs. fraction undiss.
MSC	0.34	0.34	0.11	<0.02
MSE	1.2	1.2	0.46	0.40

- Dynamics: Calculations are <u>NOT</u> unique fortuitous? unrestricted by expt. product energies
- MSE better than MSC for making methyl sulfonyl

Summary and Conclusions

Ultrafast Photoionization Studies of Unimolecular Dissociation

Directly measured dissociation rates:

- Correlate with results from product studies
 - primary dissociation: lifetimes and anisotropy
 - secondary/unimolecular dissociation:
 - most useful when internal energy known from product studies
 - direct comparison for same excitation conditions
- Acetyl dissociation nonstatistical behavior is precursor dependent
 - preparation-specific: questions remain about how so
 - ▶ better candidate for control than otherwise
- Methyl sulfonyl can be generated from MSE consistent with dynamics calculations

